Numerical Solutions of a Vector Ginzburg-landau equation with a Triple-Well Potential

نویسندگان

  • John M. Neuberger
  • Dennis R. Rice
  • James W. Swift
چکیده

We numerically compute solutions to the vector Ginzburg-Landau equation with a triple-well potential. We use the Galerkin Newton Gradient Algorithm of Neuberger & Swift and bifurcation techniques to find solutions. With a small parameter, we find a Morse index 2 triple junction solution. This is the solution for which Flores, Padilla, & Tonegawa gave an existence proof. We classify all of the solutions guaranteed to exist by the Equivariant Branching Lemma at the first bifurcation points of the trivial solutions. Guided by the symmetry analysis, we numerically compute the solution branches. Revised manuscript submitted to the International Journal of Bifurcation and Chaos on August 28, 2002

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two–Dimensional Complex Ginzburg–Landau Equation

The Ginzburg–Landau equation has been used as a mathematical model for various pattern formation systems in mechanics, physics and chemistry. In this paper, we study the complex Ginzburg–Landau equation in two spatial dimensions with periodical boundary conditions. The method numerically approximates the solution by collocation method based on radial basis functions (RBFs). To improve the numer...

متن کامل

On the stable hole solutions in the complex Ginzburg–Landau equation

We show numerically that the one-dimensional quintic complex Ginzburg–Landau equation admits four different types of stable hole solutions. We present a simple analytic method which permits to calculate the region of existence and approximate shape of stable hole solutions in this equation. The analytic results are in good agreement with numerical simulations.

متن کامل

Stability of Plane Wave Solutions in Complex Ginzburg-Landau Equation with Delayed Feedback

We perform bifurcation analysis of plane wave solutions in a one-dimensional complex cubic-quintic Ginzburg–Landau equation with delayed feedback. Our study reveals how multistability and snaking behavior of plane waves emerge as time delay is introduced. For intermediate values of the delay, bifurcation diagrams are obtained by a combination of analytical and numerical methods. For large delay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003